
PRINCIPLES UNDERLYING THE UNIFORM 

BREAKDOWN OF ROCKS BY AN EXPLOSION 

V. M. Kuznetsov and E. N. Sher UDC 622.235.001.1 

The p r o b l e m  of obtaining f r agmen t s  of specif ied dimensions  by means  of an explosion is ex-  
t r e m e l y  impor tan t  in the p r e s e n t - d a y  mining indust ry .  It is wel l  known [1] that under  o r -  
d inary  conditions explosions yield f r agmen t s  of widely vary ing  shapes  and s i z e s .  It is eco-  
nomica l ly  undes i rab le  to produce  e i ther  very  l a rge  pe i ces  which a r e  inconvenient for  
p r o c e s s i n g  or  uv_duly fine o res  and rocks .  The var ious  explos ive  devices  [2-4] used  at 
the p r e s e n t  t ime  in mines  and qua r r i e s  fail  to p rov ide  an adequate solution to this p r o b l e m .  
This  pape r  se ts  out a fundamental  f o rm of explosion, theore t ica l ly  producing absolute uni- 
f o rmi ty  of f r a g m e n t  s ize .  

In developing the s chem e  for  an opt imum explosion we make  the following s impl i fying assumpt ions :  

a) the med ium is ideal and incompress ib l e ;  
b) the action of the explosion is s imply  c h a r a c t e r i z e d  by the m o m e n t u m  p r e s s u r e  

P =  ~ p ( t ) d t ,  
(I  

where p(t) is the p r e s s u r e .  

The f i r s t  assumpt ion  (as to the ideal nature  of the medium) is based  on the fact  that in the sho r t -  
and m e d i u m - r a n g e  zones around an explosion the tangential  s t r e s s e s  in the med ium are  much s m a l l e r  than 
the ave r age  hydros ta t ic  p r e s s s u r c ,  and to a f i r s t  approximat ion may  be neglected.  The slight c o m p r e s -  
sibi l i ty of rocks  usual ly  has l i t t le effect  on the k inemat ics  of the mot ion of the main  rockbulk ,  e spec ia l ly  in 
the p r e s e n c e  of f ree  su r faces ;  it is accordingly reasonable  to a s s u m e  the i r  incompress ib i l i ty .  

The second assumpt ion  is based  on the fact  that, on the one hand, we may  neglect  d i sp lacements  of 
the boundar ies  of the med ium during the t ime  of appl icat ion of the explosive load, and, on the other  hand, 
that during this t ime the shock waves a re  able to t r ave l  through the volume of rock  being broken  down s e v -  
e r a l  t i m e s .  

These  assumpt ions  g rea t ly  s impl i fy  the ma themat i ca l  descr ip t ion  of explosions in solids,  and at the 
s a m e  t ime,  in ce r ta in  cases  [5, 6], enable us to p r e s e r v e  the essent ia l  f ea tu res  of the r ea l  phenomenon in 
the model  r ep re sen ta t i on .  In the model  of the medium cons idered  here ,  the instantaneous veloci ty  f ie ld is 
given by the equation 

where  p is the density of the medium and we have introduced ~ = - (P/p) ,  the veloci ty  potential  f ield.  

We shall  he re  consider  the plane p rob l em.  This  case  is approx imate ly  r ea l i zed  in p r ac t i ce  for  the 
b las t ing  of one or s eve ra l  rows of boreho les  in a plane pe rpend icu la r  to the i r  ax is .  In the plane case  [7] 
we may  introduce the following complex potential  w(z): 
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w (z)=w(x, y)+i~;(x, y), z=x+~y. (i) 

Let a region G bounded by a convex curve be specified in the z plane. We have to place a layer  of explo- 
sive on the surface F in such a way that after the blast  the region G may be broken down in a uniform man-  
ner .  This requirement  amounts to the creat ion of a potential ~ on the surface  F, such that the velocity field 
determined by the complex potential w(z) may lead to deformations which are,  in a cer tain sense,  uniform 
over  the whole region G. F i r s t  of all, we rSust establish what deformations are  under considerat ion here.  
It is c lear  f rom physical  considerat ions that shears  play a major  par t  in the breakdown of the mater ia l .  
As our third assumption we therefore  take the following rupture cr i te r ion:  The mater ia l  is broken down 
when maximum shear  s t ra ins  of a cer ta in  cr i t ica l  value are  reached at a cer ta in  point. 

In th is  formulat ion it is reasonable  to s imply r e fe r  to ra tes  (velocities) of deformation.  In the plane 
case  the deformat ion-veloci ty  tensor  takes the form [8] 

~xy 

where 

_ o~=. ov.__y. 
-=~--~o-~, ~Y~= Oy' 

~xy 
~yy , 

i / Ovx OVg~ 

(2) 

where Vx, Vy are  the components of the veloci ty vec tor .  The maximum shear  velocity is 

= 4 3 'lma: (3) 

The velocity field ar is ing in an ideal incompress ib le  medium under the influence of momentum p r e s s u r e  
is i rrotat ional ,  

0% 0% _ 0. 
ax ay 

In addition to this we have the equation of continuity, 

0% Ov v _ 

-~ + - E  - o. 

The first  derivative of the complex potential (1) determines the complex-conjugate velocity 

dw 
d"'[ = v= - -  ivy, 

and the second determines  the components of the deformation velocity tensor ,  

dnw Ov x . Ov x Ov v 0% 02q) a2q~ (4) 

From Eqs. (2) and (4) we obtain 
~W. 

= --~yv = Re d-iT , 

a~w 
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and f rom Eq. (3) we obtain 

~lmax : Idz2 [" 

Substituting Eq. (4) in here we obtain 

Clearly,  the breakdown of the mater ia l  in the region G takes place in a uniform manner  if the maxi-  
mum shear  velocities are  equal to a single constant value, constituting a strength charac te r i s t i c  of the 
mater ia l ,  everywhere  within the region. 

The breakdown factor  D considered in [9] takes the foIlowing fo rm in the plane case :  

We may convince ourse lves  that 

D = 2"~];nax' 

Thus the breakdown cr i t e r ion  which was introduced formal ly  on the basis of energy considerat ions in [9] 
now has a c lear  physical  meaning. The problem of the explosion associa ted  with the detonation of a single 
borehole charge  was considered on this basis  in [10], and the disposition of the charges  in a s ingle- row 
explosion was calculated.  

Returning to the problem of uniform breakdown, we ar r ive  at the following conclusion: We must  en- 
sure a momentum p r e s s u r e  on the surface  of the region G such that the following equation may be sat isf ied 
everywhere  inside the region: 

-~d~u: == COIISt, 

In a par t icu lar  case we may put 

d2w 
- - = C o n s t .  dz 2 

Then 

w = A ~  ~Bz-[-C,  (5) 

where A, B, and C are complex constants .  

The prac t ica l  real izat ion of the velocity field descr ibed by the potential (5) is i l lus t ra ted by the fol- 
lowing example.  Let  it be required  to break down the rock within the volume of a p r i sm  having an i sosce les  
r ight tr iangle as its base (Fig. 1). 

The real  potential is taken in the fo rm 

q)=axy, (a=const). 

The origin of coordinates and the position of the axes are indicated in Fig. 1. This potential is a par t icular  
case of Eq. (5) and sat isf ies the condition of being equal to zero  on the free surface  AB. The potential dis-  
tribution on the la tera l  surfaces  of the pr i sm,  on faces AC and BC, takes the form 

(p=--ax([AB[ - -  x). 
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One of the possible arrangements for multirow blasting is the following. The triangular pr ism in question 
constitutes the central channel [4]. Then the two neighboring triangular prisms are blasted on aa analogous 
principle, after  wbich the rectangular pr isms ~p = 0 on AB, AD, ~ = a 1AB I x on DC; p = a  lAB lY on BC are suc- 
cessively blasted {Fig. 2). The potential distribution on the surface of the rectangular pr ism is indicated 
in Fig. 3. 

The variable potential distribution indicated in Figs. 1 and 3 may be created, for example, by placing 
different quantities of explosive in holes bored along the corresponding faces BB, as inthe case of a direc-  
tional explosion [6]. It is by no means impossible that a potential distribution of this kind may be obtained 
by regulating the delay time when blasting individual boreholes and rows of boreholes.  
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